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We present that the vector potential of electromagnetic wave propagating in superlattices
obeys the sine-Gordon equation. The soliton and breather solutions are given. The well-
known soliton and breather solutions of the sine-Gordon equation provide a theoretical
description of the vector potential of electromagnetic wave propagating in superlattices.
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Nonlinear wave propagation through inhomogeneous media has attracted
considerable attention (Broderich and Martijn, 1995; Kivshar, 1993) in recent
years. One of the simplest and physically relevant models of an inhomogeneous
continuous medium is that with periodic variations on its parameters. In these
systems, superlattices have been extensively studied by both experimental (Grahn
et al., 1991; Kwoket al., 1995) and theoretical techniques (Bulashenkoet al., 1996;
Kastrupet al., 1997). Superlattices are fascinating because the structures exhibit
collective properties not shares by either constituent, and these characteristics can
be controlled through variation of the structural parameters.

Soliton phenomena in superlattices have been attracting considerable atten-
tion. We have shown that the negative differential conductivity in weakly coupled
narrow-miniband semiconductors results in the formation of electric-field domains,
and the envelope of its wave function is governed by the nonlinear Schrö dinger
equation (NLS) which has soliton solutions (Martijn de Sterke and Sipe, 1988;
Tianet al., 2001; Tian and Wu, 1999).

In the present paper we will show that the vector potential of electromagnetic
wave propagating in superlattices obeys the sine-Gordon equation (SG). Based on
the inverse scattering method, the soliton and breather solutions are given, which
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provide a theoretical description of the vector potential of electromagnetic wave
propagating in superlattices.

Except for very thin barriers, the tight binding model provides an adequate
description for the superlattice miniband energy dispersionE( Ep)

E( Ep) = p2
xy

2m
+ W

2

(
1− cos

pzd

h

)
(1)

whereW is the miniband width of superlattice inz direction,d is the superlattice
period.

In the presence of electromagnetic wave propagating in the superlattice in
z direction, we make the Peierls substitution (Hofstadter, 1976; Tian, 1998): we
replaceEp by EP + e EA(t) in the dispersion relationE( Ep), whereEP is the momentum
canonical toEr , EA(t) is the vector potential of the electromagnetic wave,e is electron
charge.

From the resulted dispersion, the current density inz direction can be easily
obtained
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in which the relationνz = ∂
∂Pz

E( EP + e EA(t)) is used.
It is known that the equilibrium distribution in momentum space of super-

lattice electrons is centrosymmetric without external field andjz = 0. Under an
applied electric field, the distribution function in momentum space will be unsym-
metrical. Now, we investigate the electromagnetic wave propagating in superlattice
with a weak applied electric field. The following two properties are assumed:

1. Under a weak applied electric field, the momentum distribution is not far
from centrosymmetric state (Tian, 1998; Tian and Ma, 1998). We approx-
imately have

∑
Pz

sin Pzd
h = 0. Then the current density Eq. (2) can be

written as

jz(t) = −e
Wd
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h
(3)

2. Considering that the wave length of electromagnetic wave is much
larger than the superlattice periodd, the superlattice can be treated as a
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homogeneous medium for the electromagnetic wave. Thus

∇2 EA− 1

c2

∂2 EA
∂t2
= −µ Ej (4)

wherec is light velocity in the superlattice andµ is susceptibility. In the
z direction, it is

∇2Az− 1

c2
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∂t2
= −µjz(t) (5)

Inserting Eq. (3) into (5) gives
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This is a sine-Gordon equation.

To simplify notations, let

φ(t) = eAz(t)d

h
(7a)

1
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They bring Eq. (6) to

∂2φ
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With the new independent variablesξ andτ

ξ = 1

2g
(z+ ct) (9a)

τ = 1

2g
(z− ct) (9b)

It is straightforward to obtain the standard sine-Gordon equation (SG equation)

θξτ = sinθ (10)

whereθ (ξ, τ ) = φ(z, t), and a derivative is indicated by a subscript.
It is well known that the SG equation has soliton and breather solutions. Using

the inverse scattering method, the Lax pair corresponding to the SG equation (10)
are (Lamb, 1980)

L(λ) = −iλσ3+U (11a)

M(λ) = i

4λ
V (11b)
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where

U =
(

0 u
−u 0

)
, u = −1

2
θξ (12)

V =
(

cosθ sinθ
sinθ − cosθ

)
(13)

andσ3 is the Fermi matrix,λ is a parameter determined by the boundary conditions.
After a lengthy procedure, the solution ofu(ξ, τ ) is written in the form

u(ξ, τ ) = 2
∂

∂ξ
arctan

Im det(I − i M )

Re det(I − i M )
(14)

whereI is a unit matrix.
Becauseu = − 1

2θξ , we immediately find that the solutions will be

θ = −4 arctan
Im det(I − i M )

Re det(I − i M )
(15)

For the simplest case of single soliton, the matrixM reduces to the scalar

M = e21 (16)

where

21 = 2ν1(ξ − ξ1)+ τ

2ν1
(17)

The subscript “1” indicates single soliton. Hereν1 = Im λ1, λ1 = µ1+ i ν1, ξ1 is
a constant. They are determined by the boundary conditions and initial conditions.
Then the single-soliton solution for the SG equation is

θ1 = 4 arctane21 (18)

For the breather solution, in which the oscillations and the envelope move at
different velocities, we obtain
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Re det(I − i M )
= ν1
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sin8b

cosh2b
(19)

where

2b = 2ν1(ξ − ξ1)+ 2ν1
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ϕ is a real constant. The subscript “b” indicates breather solution. Finally, the
breather solution is then

2b = −4 arctan
ν1 sin8b

µ1 cosh2b
(22)
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In conclusion, we present a new soliton phenomenon in this paper. We show
that the vector potential of electromagnetic wave propagating in superlattices obeys
the sine-Gordon equation. Based on the inverse scattering method, the soliton and
breather solutions are given, which provide a theoretical description of the vector
potential of electromagnetic wave propagating in superlattices.
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